Changes in microstructure and stiffness of Scots pine (Pinus sylvestris L) sapwood degraded by Gloeophyllum trabeum and Trametes versicolor – Part II: Anisotropic stiffness properties

نویسندگان

  • Thomas K. Bader
  • Karin Hofstetter
  • Gry Alfredsen
  • Susanne Bollmus
چکیده

Fungal decay considerably affects the macroscopic mechanical properties of wood as a result of modifications and degradations in its microscopic structure. While effects on mechanical properties related to the stem direction are fairly well understood, effects on radial and tangential directions (transverse properties) are less well investigated. In the present study, changes of longitudinal elastic moduli and stiffness data in all anatomical directions of Scots pine (Pinus sylvestris) sapwood which was degraded by Gloeophyllum trabeum (brown rot) and Trametes versicolor (white rot) for up to 28 weeks have been investigated. Transverse properties were found to be much more deteriorated than the longitudinal ones. This is because of the degradation of the polymer matrix between the cellulose microfibrils, which has a strong effect on transverse stiffness. Longitudinal stiffness, on the other hand, is mainly governed by cellulose microfibrils, which are more stable agains fungal decay. G. trabeum (more active in earlywood) strongly weakens radial stiffness, whereas T. versicolor (more active in latewood) strongly reduces tangential stiffness. The data in terms of radial and tangential stiffnesses, as well as the corresponding anisotropy ratios, seem to be suitable as durability indicators of wood and even allow conclusions to be made on the degradation mechanisms of fungi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics.

The development of anatomical, hydraulic and biomechanical properties in Scots pine (Pinus sylvestris L.) stems aged 7 to 59 years was followed. The hydraulic diameter and length of tracheids increased with age to a maximum at 15 and 35 years, respectively. Number of tracheids per unit of sapwood area decreased with age to a minimum of 500-600 tracheids mm(-2). Variations in specific hydraulic ...

متن کامل

Climate influences the leaf area/sapwood area ratio in Scots pine.

We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Sc...

متن کامل

Toward extension of a single tree functional–structural model of Scots pine to stand level: effect of the canopy of randomly distributed, identical trees on development of tree structure

Functional–structural plant growth models (FSPMs) combine the description of the structure of plants and the resource acquisition and partitioning at a detailed architectural level. They offer ameans to study tree and stand development on the basis of a structurally accurate description that combines resource capture at the same level of detail.We describe here how a ‘shoot-based’ individual tr...

متن کامل

NATURAL WEATHERING OF SCOTS PINE (Pinus sylvestris L.) BOARDS MODIFIED WITH FUNCTIONALISED COMMERCIAL SILICONE EMULSIONS

A quat-silicone micro-emulsion (particle size <40 nm), an amino-silicone macro-emulsion (110 nm), and an alkyl modified silicone macro-emulsion (740 nm) were used to modify Scots pine (Pinus sylvestris L.) sapwood. Treated and uncoated boards were exposed to natural weathering for one year along with water treated controls according to EN 927-3. The treatment with silicone emulsions did not enh...

متن کامل

Effects of Thermomechanical Densification and Heat Treatment on Density and Brinell Hardness of Scots Pine (Pinus sylvestris L.) and Eastern Beech (Fagus orientalis L.)

The effects of thermomechanical densification (TMD) and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.) woods were investigated. Samples were densified using a specially designed hydraulic press with target compression ratios of 20 and 40%, and at 110 °C and 150 °C. Then, the heat treatment was applied to the samples at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011